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ﬂvs AGI

Companies working
INTELLIGENCE towards AGI

: Google
oo 0QMeta
Machine's ability to Machines can be made

perform a single task to think and function as @ OpenAI

extremely well, even

ARTIFICIAL NARROW ARTIFICIAL GENERAL

s,

INTELLIGENCE

better than humans. human mind.
Facial recognition + Asystem that can learn any
Recommendation system task a human can, without
(Netflix, YouTube) task-specific programming

Autonomous driving (Tesla
Autopilot)
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Trustworthiness of Al

* Most existing efforts focus
on the development of ]
advanced Al algorithms, but :
largely ignore the
trustworthiness aspects.

* Interpretability

» Safety & Robustness
= Privacy

* Fairness

Privacy Attacks




TrustAGI Lab

The Trustworthy AGI (TrustAGI) Lab at Griffith University is at
the forefront of pioneering research in Artificial General
Intelligence (AGl), focusing on developing ethical, reliable, and
safe Al technologies. This leading lab is dedicated to advancing
the understanding and application of AGI through innovative

projects, publications, and collaborations.



TrustAGl Research — Vision and Focus

e Advancing AGIl Research
o Developing novel Al algorithms
o Endowing machines with human level intelligence

e Ensure Trustworthiness and Transparency
o Focusing on explainability, safety, fairness, and privacy



Advancing AGIl Research with Impacts

Griffith University



Data Modality

« We have many data in the real word (the focus of many other labs)
o Text S
o Image d
o Video

Text Data Image Data Video Data
e Our focus

o Graph Data
o Time Series w@%

3 @_ﬁ@

Graph Data Time Series Data 7




Graphs In real-world appllcatlons
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Protein Interaction Networks
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‘Graph Neural Networks (GNNs)

e Methods and Applications i ".', % Real Graphs
> Frontier of Deep Learning G
o Effective Representation for Graph Data

o Wide applications

Feature
Representation

Link prediction in
bipartite graphs
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Graph Al for Drug Discovery

GNN for Protein-ligand Interaction Prediction (Nature Machine
Intelligence, 2024
Physicochemical graph neural network for learning protein-ligand
interaction fingerprints from sequence data
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Fig. 1. PSICHIC (PhySIcoCHemICal graph neural network). a, Ligand SMILES forms an atom graph with atom type embeddings
and by covalent bonds. b, Protein sequence forms a residue graph, using ESM2 embeddings and
physicochemical properties, connected by predicted contact map from ESM2 protein language model (see Methods). ¢, Over three iterative

layers, (I) PSICHIC models the intramolecular forces by passing messages between atoms and between residues using two independent GNNs.

(1) PSICHIC imposes physicochemical constraints by grouping ligand atoms into functional groups and protein residues into clustered protein
regions. (I1I) PSICHIC models intermolecular forces in three steps: first, it aggregates ligand functional groups into a ligand ball; second, it
calculates interaction strengths between the ligand ball and protein regions; third, PSICHIC disaggregates the ligand ball into updated ligand
atoms and ungroups clustered protein regions into updated protein residues to conclude one layer. d, After three layers, PSICHIC creates an
interaction fingerprint, weighting atoms and residues via i scores from i forces. The fingerprint serves as input to a
single-hidden-layer network for predictions. e, PSICHIC’s i ints are izable and i across tasks.

www.nature.comynacmachintell/ May 2024 Vol. 6 No. 5

nature
machine
intelligence

Generating quantum circuits

IF: 23.9
Featured on Phys.org, The Medical News, and Australian Manufacturing

Magazine.



https://phys.org/news/2024-06-ai-tool-rapid-effective-drug.html
https://www.news-medical.net/news/20240619/Novel-AI-tool-poised-to-reshape-virtual-screening-in-early-stage-drug-discovery.aspx
https://www.australianmanufacturing.com.au/aussie-researchers-develop-game-changing-ai-for-drug-screening/
https://www.australianmanufacturing.com.au/aussie-researchers-develop-game-changing-ai-for-drug-screening/

Al for Drug Discovery

Al for Protein Design (Nature Reviews Bioengineering, to appear in
2025)

o Aroadmap to Al for protein design
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LLM for Scientific Discovery

o« LLM for Scientific Discovery (Nature Machine Intelligence, 2025
o Large language models for scientific discovery in molecular property
prediction

@ . Prompt for LLMs:
R4 Assume you are an experienced chemist. Please
come up with 20/30 rules that are important to /‘_\
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For example, molecules with amolecular weight under 500 Da are more likely insights. Once the model is trained, it provides insights that explain how it makes
topass through the BBB. b, Knowledge inference from data. Here, LLMs analyse its predictions. For example, in the context of BBBP prediction, the model can
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https://www.sciencedaily.com/releases/2025/02/250226142444.htm
https://www.miragenews.com/ai-tool-revolutionizes-scientific-discovery-1414575/
https://techxplore.com/news/2025-02-simulating-scientists-tool-ai-powered.html
https://techxplore.com/news/2025-02-simulating-scientists-tool-ai-powered.html

‘Unifying Large Language Models and Knowledge Graphs

. . Knowledge Graphs (KGs)
Motivation:
Cons: N Pros:
«  LLMs often lack the domain-specific knowledge > e b S
. ) ) + Indecisiveness ( \ + Decisiveness

required for accurate and trustworthy reasoning in e T N e

reaI'WorI d appll Cati ons specific/New Knowledge + Evolving Knowledge
- This limitation is particularly critical in high-stakes Pros: Cons:

. . + General Knowledge . Ianc:.npliteness
. i e ackl anguage
domains such as healthcare, law, and finance. B G i
—~*+ Unseen Facts

- Enhancing faithful reasoning is key to increasing

[ idi isi - Large L Models (LLM
LLM adoption and avoiding misinformation. g Language Sodem Lt

Unifying Large Language Models and Knowledge Graphs: A Roadmap

[TKDE-2024] This article introduces a roadmap for integrating Large Language Models (LLMs) like ChatGPT and GPT4 with

Knowledge Graphs (KGs) to leverage their complementary strengths in natural language processing and artificial intelligence. It
Pro posed Sol utlon outlines three frameworks for this unification: KG-enhanced LLMs, LLM-augmented KGs, and a synergistic approach, aiming to

improve both factual knowledge access and interpretability while addressing the challenges of KG construction and evolution.

* lintegrate LLMs with external knowledge sources
(knowledge graphs).

1000+ Citations in 12 months



lme Series Data

Time Series
[tim Tsir-()éz]

A sequence of data points
that occur in successive
order over some period
of time.

Applications:

* Forecasting (economy, sales, traffic, weather)

 Anomaly detection (network monitoring, fraud
detection)

* Classification (speech recognition, ECG analysis,
patient monitoring)

Griffith University
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Time Series Forecasting

o Multivariate Time Series Graph Neural Networks (MTGNN) — Pioneers a
new Direction
X 1st most C|ted paper in KDD 2020 (2,000 Citations)
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e« Graph Wavenet for Traffic Forecasting
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Multivariate time series

Griffith University



Large Language Models for Time Series

o Time-LLM (ICLR-2024)

:/‘ Forecasts !
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Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

[ICLR-2024] This work introduces Time-LLM, a novel reprogramming framework that adapts Large Language Models (LLMs) for
general time series forecasting, overcoming the challenges of data sparsity and modality alignment between time series and natural
language. By reprogramming time series data with text prototypes and employing the Prompt-as-Prefix (PaP) technique for enriched
input context, Time-LLM demonstrates superior forecasting performance, outshining specialized models in both few-shot and zero-
shot learning scenarios.

700 Citations in 1 year



Ensuring Trustworthiness of AGI

Griffith University
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Highlights

o Featured on the Proceedings of the IEEE (IF 20.6)

February 2024 | Volume 112

Proceedings:IEEE . GNN Verification Algorithm

Trustworthy Graph Neural Networks: o IEEE S&P'24, tOp SeCU rlty Conference

Aspects Methods and Tnends

o EXxplain Adversarial Transferability
o |EEE S&P-24, top security conference

) HA § >af .
Survival Strategies for Depressed Al Academics

e Detecting Backdoor Attacks
o |EEE S&P-24, top security conference

o Robust Adaption of Pre-trained Encoders
o |EEE S&P-24, top security conference

o GraphGuard
o NDSS-24, top security conference



Detecting LLM Generated Content
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GenAl: Text-to-Text (T2T)

Evaluating generators and discriminators for Al-generated text vs

human-written text.

e How?
o Modify the LLM generating behavior under a key;
o Verify that texts are from the modified LLM. }

LLM watermark

« What are we working on”?
o Revealing security vulnerabilities of existing LLM watermarks (to appear in ACSAC-24);
o Proposing provable secure LLM watermark (ICML’25).
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Improving and Unde
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Understanding adversarial robustness;
Achieving better robustness-performance trade-off;

Boosting robustness during knowledge distillation, domain adaption, etc.

ding Robustness
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Safeqguarding Data Privacy

« We look into different privacy leakage in Al:
o> Membership;
o Property/attribute;
o Preference;
- Raw data.

« We examine privacy leakages and their mitigations across different learning
models/paradigms:

Federated/distributed/centralized learning;

Pre-trained encoder,

Continual learning;

Foundation models.

O
O
O
O
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Interplay of Trustworthy Al

The Trustworthy Al/ML Umbrella

Security Privacy Safety Transparency Fairness Ethics Regulation

PUBLIC SECTOR

22



Other Applications

Smart Traffic and Cities

o Traffic Forecasting

Anomaly Detection

o Detect anomalies/outliers from data
Recommender Systems

o Recommend products to users
Healthcare Data Analysis

o Al for Health

Drug Discovery

o Al for Science
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TustAGI — Advancing AGI with

Trustworthiness




