Temporal Graph Mining for Anomaly Detection.
Grant: ARC Discovery Project (2024)
Description: This project aims to develop new technologies to detect anomalous patterns from dynamic networked data. Anomalies in networked data are commonly seen but are often hidden within the complex interconnections of large-scale, heterogeneous, and dynamic data, rendering existing detection methods ineffective. This project expects to design novel temporal graph mining techniques to compress large-scale networks, unify heterogeneous information, and enable label-efficient anomaly detection. The performance will be assessed in social and business networks, with significant benefits to governments and businesses in many critical applications, including cyberbullying detection, malicious account detection, and cyber-attack detection.