Going Deep: Graph Convolutional Ladder-shape Networks

Abstract

Neighborhood aggregation algorithms like spectral graph convolutional networks (GCNs) formulate graph convolutions as a symmetric Laplacian smoothing operation to aggregate the feature information of one node with that of its neighbors. While they have achieved great success in semi-supervised node classification on graphs, current approaches suffer from the over-smoothing problem when the depth of the neural networks increases, which always leads to a noticeable degradation of performance. To solve this problem, we present graph convolutional ladder-shape networks (GCLN), a novel graph neural network architecture that transmits messages from shallow layers to deeper layers to overcome the over-smoothing problem and dramatically extend the scale of the neural networks with improved performance. We have validated the effectiveness of proposed GCLN at a node-wise level with a semi-supervised task (node classification) and an unsupervised task (node clustering), and at a graph-wise level with graph classification by applying a differentiable pooling operation. The proposed GCLN outperforms original GCNs, deep GCNs and other state-of-the-art GCN-based models for all three tasks, which were designed from various perspectives on six real-world benchmark data sets..

Publication
AAAI Conference on Artificial Intelligence, AAAI-20
Ruiqi Hu
Ruiqi Hu
CEO

My research interests include Graph representation, Machine Learning, Graph Neural Networks.

Shirui Pan
Shirui Pan
Professor and ARC Future Fellow

My research interests include data mining, machine learning, and graph analysis.