Long-short Distance Aggregation Networks for Positive Unlabeled Graph Learning

Abstract

Graph neural nets are emerging tools to represent network nodes for classification. However, existing approaches typically suffer from two limitations: (1) they only aggregate information from short distance (e.g., 1-hop neighbors) each round and fail to capture long distance relationship in graphs; (2) they require users to label data from several classes to facilitate the learning of discriminative models; whereas in reality, users may only provide labels of a small number of nodes in a single class. To overcome these limitations, this paper presents a novel long-short distance aggregation networks (LSDAN) for positive unlabeled (PU) graph learning. Our theme is to generate multiple graphs at different distances based on the adjacency matrix, and further develop a long-short distance attention model for these graphs. The short-distance attention mechanism is used to capture the importance of neighbor nodes to a target node. The long-distance attention mechanism is used to capture the propagation of information within a localized area of each node and help model weights of different graphs for node representation learning. A non-negative risk estimator is further employed, to aggregate long- short-distance networks, for PU learning using back-propagated loss modeling. Experiments on real-world datasets validate the effectiveness of our approach.

Publication
CIKM'19 - Proceedings of the 2019 ACM Conference on Information and Knowledge Management
Man Wu
Man Wu
Assistant Prof @ U. Sci&Tec Beijing

My research interests include data mining, machine learning, and graph analysis.

Shirui Pan
Shirui Pan
Professor and ARC Future Fellow

My research interests include data mining, machine learning, and graph analysis.