BaLeNAS: Differentiable Architecture Search via Bayesian Learning Rule

Abstract

Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost through weight sharing and continuous relaxation. However, more recent works find that existing differentiable NAS techniques struggle to outperform naive baselines, yielding deteriorative architectures as the search proceeds. Rather than directly optimizing the architecture parameters, this paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions. By leveraging the natural-gradient variational inference (NGVI), the architecture distribution can be easily optimized based on existing codebases without incurring more memory and computational consumption. We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability. The experimental results on NAS-Bench-201 and NAS-Bench-1Shot1 benchmark datasets confirm the significant improvements the proposed framework can make. In addition, instead of simply applying the argmax on the learned parameters, we further leverage the recently-proposed training-free proxies in NAS to select the optimal architecture from a group architectures drawn from the optimized distribution, where we achieve competitive results on the NAS-Bench-201 and NAS-Bench-1Shot1 benchmarks. Our best architecture in the DARTS search space also obtains competitive test errors with 2.37%, 15.72%, and 24.2% on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively.

Publication
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR-22)
Miao Zhang
Miao Zhang
Professor @ Harbin Institute of Technology

My research interests include Neural Architecture Search(NAS), Bayesian Optimization, High-dimensional Data, and Evolutionary Algorithm.

Shirui Pan
Shirui Pan
Professor and ARC Future Fellow

My research interests include data mining, machine learning, and graph analysis.