
Hypergraph Convolutional Network for Group
Recommendation

Renqi Jia†‡, Xiaofei Zhou†‡∗, Linhua Dong†‡ and Shirui Pan§
† Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
‡ School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

§ Faculty of Information Technology, Monash University, Melbourne, Australia
†‡jiarenqi@iie.ac.cn, †‡zhouxiaofei@iie.ac.cn, †‡donglinhua@iie.ac.cn, §shirui.pan@monash.edu

Abstract—Group activities have become an essential part of
people’s daily life, which stimulates the requirement for intensive
research on the group recommendation task, i.e., recommending
items to a group of users. Most existing works focus on aggregat-
ing users’ interests within the group to learn group preference.
These methods are faced with two problems. First, these methods
only model the user preference inside a single group while
ignoring the collaborative relations among users and items across
different groups. Second, they assume that group preference is an
aggregation of user interests, and factually a group may pursue
some targets not derived from users’ interests. Thus they are
insufficient to model the general group preferences which are
independent of existing user interests. To address the above issues,
we propose a novel dual channel Hypergraph Convolutional
network for group Recommendation (HCR), which consists of
member-level preference network and group-level preference
network. In the member-level preference network, in order
to capture cross-group collaborative connections among users
and items, we devise a member-level hypergraph convolutional
network to learn group members’ personal preferences. In the
group-level preference network, the group’s general preference
is captured by a group-level graph convolutional network based
on group similarity. We evaluate our model on two real-world
datasets and the experimental results show that the proposed
model significantly and consistently outperforms state-of-the-art
group recommendation techniques.

Index Terms—Group Recommendation, Hypergraph Convolu-
tion, Graph Convolution, Representation Learning

I. INTRODUCTION

With the rapid growth of Internet services and mobile
device usages, users are inundated with tremendous choices
and options. Recommender systems have played a significant
role in alleviating information overload problems with the
development of artificial intelligence [1]–[3]. Recently, many
works focus on a more complicated scenario where items
are recommended to a group of users, denoted as group
recommendation [4]–[6]. Different from the decision of an
individual user, the decision-making process of a group is
more complex, as different members in the group have diverse
interests and contribute unequally to the final decision.

The problem of preference assessment and preference ag-
gregation of group members has attracted researchers from
academics and industry. The earlier predefined methods em-
phasize the process of preference aggregation. In these meth-
ods, the group interest is modeled by fixed strategies such as
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Fig. 1. The example of the group-item interaction data. The red and blue parts
show the group’s collaborative preferences from the perspective of user and
item, respectively. The question marks indicate the cross-group collaborative
signals.

average [7], least misery [8], maximum satisfaction [9], and so
on. However, these predifined strategies are data-independent,
short of the ability to model the preferences of group members
and adjust their weights dynamically. This ability is significant
for a group to make decisions on different items. Therefore,
these predefined strategies are insufficient to capture the
diverse member intention and the complex decision-making
process, which leads to the suboptimal performance of the
group recommendation.

The model-based approaches focus on the group prefer-
ence aggregation process by capturing the interactions among
members. The probabilistic model aggregates both the group
member’s individual preferences and their impact on the group
to make recommendation. The PIT [10] distincts different
user’s contributions towards the final decision based on the
assumption that the most significant user have a high impact on
the group’s decisions. The COM [11] captures the generative
process of group activities supposing that a user’s influence
depends on the decided topic. However, these probabilistic
models suffer from an incomplete assumption that a user has
the same likelihood to follow the group’s decisions across
different groups.

Recently, deep neural networks are applied to group recom-
mender systems thanks to their high-quality recommendation,
which provides an in-depth understanding of user interests
and the dynamic aggregation process of group preference.
Cao et al. [5] incorporated the attention mechanism to ag-
gregate the users’ interests as the group representation in



a learnable way. To further refine the aggregation process,
Vinh Tran et al. [6] applied the sub-attention networks to
model every single user and the fine-grained interactions
between group members. However, they rely on the user
information within the group when aggregating user interests,
while ignoring the relationships of users between groups. To
address this limitation, some methods introduce cross-group
social relationships to learn user interests. Guo et al. [12]
proposed a stacked social self-attention network to model the
social influence and user-user interactions. And the preference
aggregation process is designed as a multiple voting step.
Cao et al. [4] utilized social followee information as user-user
relations to obtain the user’s preference by aggregating the
user’s social friends representation. In summary, these methods
usually utilize neural attention mechanisms to aggregate users’
interests within the group or introduce social information to
promote the representation of group member preferences.

Although the above methods have achieved good results,
there are still several unresolved challenges: 1) These methods
tend to isolate the groups when developing preference aggre-
gation strategies, which is inadequate to capture cross-group
collaborative signals. In Fig. 1, the group g1’s collaborative
interests can be considered from user perspective and item
perspective. From the collaborative user aspect, g1 and g2 have
the overlap user u2, indicating g1 may be interested in g2’s
history clicked item i3. In view of the collaborative item, both
g1 and g3 have clicked on i2, showing that g1 and g3 have
similar interests, then g1 may be interested in g3’s historical
interacted item i4. Therefore, it is of significance to capture
cross-group collaborative relation for better group preference
modeling. 2) As a group may pursue some targets distinct
from each user’s interests, the above aggregation methods are
not sufficient to characterize the group’s general preference.
For example, in a family of three, the child prefers cartoon
movie and the parents are interested in comedy movie; but the
final chosen movie could be an educational movie when they
go to a cinema together. Thus modeling the group’s general
preference is a valuable research issue.

To address these challenges, we propose a dual channel
Hypergraph Convolutional network for group Recommenda-
tion (HCR). First, we employ a member-level hypergraph
convolutional network to integrate users’ preferences across
groups, capturing high-order collaborative information. We
connect all group members and items as a hypergraph of
overlapping sets, where each hyperedge consists of all group
members and interacted items in the corresponding group.
In order to learn the diverse group member preference, we
apply multiple convolutional layers to propagate information
along hyperedge. Second, we propose a group-level graph
convolutional network to learn the group’s general preference
which is independent of the user’s interest. We connect all
groups based on group similarity and learn the representation
of general group preference by the multi-layer convolution
operation. With the dual channel hypergraph convolutional
network, we devise a joint training strategy to learn both
group-item and user-item interactions to further capture the

member and group preference. The main contributions of this
paper are summarized as follows:
• We propose a novel dual channel hypergraph convolu-

tional network for group recommendation, which extracts
collaborative information and group similarity to enhance
group’s member preference and general preference, re-
spectively.

• We separately formulate group data as member-level hy-
pergraph and group-level overlap graph tailored for graph
convolutional network, which provides a new perspective
to learn fine-grained group representation.

• We conduct experiments on two real-world datasets and
show that the proposed framework significantly outper-
forms the state-of-the-art methods for the group recom-
mendation.

II. RELATED WORK

A. Group Recommendation

In recent years, group recommendation [13] has been widely
researched and applied in various domains. Existing methods
can be characteristically dichotomized into memory-based and
model-based approaches.

Memory-based methods can be further divided into two cat-
egories, namely preference aggregation and score aggregation.
Preferences aggregation strategy obtains the group preference
profile by combining the profiles of group members and then
applies recommendation techniques tailored for individuals to
make group recommendation. The score aggregation strategy
computes the score of the candidate item for each user and then
aggregates group member’s scores as the group’s preference
through hand-crafted heuristics, such as average [7], least
misery [8], and so on. Specifically, the average strategy takes
the average score across members in the group as the final
recommendation score to maximize overall group satisfaction.
The least misery technique chooses the lowest score among all
member’s scores as the final scores. However, both approaches
have weaknesses in measure group preference. The average
approach may select items satisfied some members but not
beneficial to others, while the least misery method may
recommend ordinary items that no one either likes or dislikes.
Baltrunas et al. [7] point out these methods are not strong
enough, as their performance is dependent on group size and
inner-group similarity. Amer-Yahia et al. [8] argue that group
members’ preference disagreements of items are inevitable and
the experiments show that taking into account disagreement
significantly improves the recommendation quality of the
average and least misery strategies.

Different from memory-based methods, model-based ap-
proaches concentrate on the group preference aggregation pro-
cess by capturing the interactions among members. The model-
based approaches are further divided into the probabilistic
model and neural model. The probabilistic model aggregates
both the group member’s individual preferences and their
impact on the group to make recommendation. The PIT [10]
constructs the group’s preference profile assuming that the



most influential user is capable to represent the group and
have a high impact on the group’s decisions, thus differentiate
different member’s contributions towards the final decision.
The COM [11] captures the generative process of group activ-
ities supposing that a user’s influence depends on the decided
topic and the group decision-making process is affected by
both the group’s preference topic and each member’s interest.
However, these probabilistic models suffer from an incomplete
assumption that a user has the same likelihood to follow the
group’s decisions across different groups.

The neural model explores attention mechanisms [14]–[16]
to provide an in-depth understanding of user interests and
the dynamic aggregation process of group preference. Cao
et al. [5] incorporated the attention mechanism to aggregate
the members as the group representation in a learnable way.
To further refine the aggregation process, Vinh Tran et al.
[6] applied the sub-attention networks to model every sin-
gle member and the fine-grained interactions between group
members. However, they rely on the user information within
the group when aggregating user interests, while ignoring
the relationships of users between groups. To address this
limitation, an alternative approach is to exploit external side
information, e.g., social network of users, personality traits,
and interpersonal relationships. For example, Guo et al. [12]
proposed a stacked social self-attention network to model the
social influence and user-user interactions. And the preference
aggregation process is designed as a multiple voting step.
Cao et al. [4] utilized social followee information as user-
user relations to obtain the member preference by aggregating
the user’s social friends representation. In contrast, our setting
is conservative and does not include extra side information:
we know only user and item ids, and item implicit feedbacks.
We capture the cross-group collaborative information through
a novel dual channel hypergraph convolutional network.

B. Neural Graph-based Recommendation

With the recent advance in neural graph embedding al-
gorithms, there is increasing attention on exploiting graph
structures for various recommendation scenarios. These works
utilize (hyper) graph neural networks (GNN) [17]–[19] to
generate enriched latent representations for users and items.
Through multi-layer propagation, the GNN-based methods
capture the high-order connections in the graph. For example,
LightGCN [20] proposes to solve the collaborative filtering
task, which learns user and item embedding via graph con-
volutional propagation on the user-item bipartite graph. As
an application on industrial-scale data, PinSage [21] proposes
to generate item embeddings on a graph constructed with
item-item connections, which can be applied for the down-
stream recommendation. In social recommendation [22]–[24],
social connections between users can be investigated with
GNN to model the propagation of user preference influenced
by social friends. The graph-based sequential recommender
systems [25]–[27] convert the clicked sequence to the item-
item graph for GNN learning, aiming at exploring the complex
sequential pattern and temporal preference. The recommender

systems incorporating knowledge graph (KG) [28]–[30] take
full advantage of the rich information in the KG to capture
connectivity between items and further model the user’s pref-
erences for items. However, these methods are not designed
for capturing the group preference.

Guo et al. [31] proposes a GNN-based model for group
recommendation, which leverages friends’ preference from the
social network and connects group members as hyperedge
to aggregate group preference. This method concentrates on
utilize side information and aggregate member interest while
ignores explicitly modeling the group’s general preference.
Compared with this approach, our proposed method captures
both the group’s member aggregation preference and general
preference.

III. NOTATIONS AND PROBLEM FORMULATION

We use bold capital letters (e.g., X) and bold lowercase
letters (e.g., x) to represent matrices and vectors, respectively.
We employ nonbold letters (e.g., x) to denote scalars, and
squiggle letters (e.g., X ) to denote sets. If not clarified, all
vectors are in column forms.

Let U = {u1, u2, ..., um}, I = {i1, i2, ..., in}, and G =
{g1, g2, ..., gk} be the sets of users, items, and groups. m,
n, and k denote the numbers of users, items, and groups
in the three sets respectively. Each user and group interacts
with different items, which indicate their preferences. There
are two kinds of observed interaction data among U , I, and
G, namely, group-item interactions and user-item interactions.
We use Y = [yth]k×n to denote the group-item interactions
and R = [rjh]m×n to denote the user-item interactions.
The t-th group gt ∈ G consists of a set of user members
Gt = {u1, u2, ..., uj ..., u|Gt|}, where uj ∈ U , |Gt| is the size
of Gt, and Gt is the user set of gt. We denote the set of items
which are interacted by gt as Yt = {i1, i2, ..., ih..., i|Yt|},
where ih ∈ I, |Yt| is the size of Yt, and Yt is the item set
of gt. Then, given a target group gt (or target user uj), our
task is defined as recommending a list of items that group gt
(or target user uj) may be interested in. Formally, we aim to
learn a function that maps an item to a real-valued score which
indicates its probability of being interacted by the target group
(or target user uj): ft : I → R.

Definition 1. Hypergraph. Let Gh = (Vh, Eh) denote a
hypergraph, where Vh is a set containing N unique vertices
and Eh is a set containing M hyperedges. Each hyperedge
ε ∈ contains two or more vertices and is assigned a positive
weight Wεε. The hyperedge weights formulate a diagonal
matrix W ∈ RM×M . The incidence matrix H ∈ RN×M is
utilized to represent the hypergraph. Hiε = 1 if the hyperedge
ε ∈ Eh contains a vertex vi ∈ Vh, otherwise 0. The vertex
degree Dii defined as Dii =

∑M
ε=1WεεHiε, and D is the

diagonal degree matrices of vertex. The hyperedge degree Bεε
is defined as Bεε =

∑N
i=1Hiε, and B is the diagonal degree

matrices of hyperedge.
Definition 2. Overlap Graph of Hypergraph. Given the

hypergraph Go = (Vo, Eo), the overlap graph of the hyper-
graph Go is a graph where each node of Go is a hyperedge in



(a) Hypergraph (b) Overlap graph

Fig. 2. The example of constructed hypergraph and overlap graph.

Gh. Two nodes of Go are connected if their corresponding
hyperedges in Gh share at least one common node [32].
Formally, Go = (Vo, Eo) where Vo = {e : e ∈ Eh}, Eo =
{(ep, eq) : ep, eq ∈ Eh, |ep ∩ eq| ≥ 1}. We assign each edge
(ep, eq) a weight Wp,q , where Wp,q = |ep ∩ eq| / |ep ∪ eq|.

IV. THE PROPOSED MODEL

In this section, we firstly show the way to model group-
based data as a hypergraph. Based on the hypergraph, we
present our dual channel hypergraph convolutional network
from member-level and group-level for group recommenda-
tion, respectively. Finally, we show the joint training strategy
to learn both group-item and user-item interactions to further
capture the member and group preference. The overall archi-
tecture of HCR is shown in Fig. 3.

A. Hypergraph Construction

To capture the beyond collaborative relations among group
members and interacted items, we adopt a hypergraph Gh =
(Vh, Eh) to represent each group as a hyperedge. Each hyper-
edge consists of the group members and the interacted items.
Formally, we denote each hyperedge as Eht = Gt ∩ Yt, i.e.,
Eht =

{
u1, u2, ..., u|Gt|, i1, i2, ..., i|Yt|

}
, where each u∗ ∈ U ,

each i∗ ∈ I, and Eht ∈ Eh. In Fig. 2(a), we show the example
of hypergraph construction, which is transformed from the
group interaction data shown in Fig. 1. As illustrated, the orig-
inal group interaction is organized as a bipartite graph where
the group and items are connected if the group interacted
with the items. After transforming the interaction data into
a hypergraph, the group members and interacted items in the
hyperedge are explicitly connected. By doing so, the many-to-
many high-order relations are captured from the graph. In Fig.
2(b), we further induce the overlap graph of the hypergraph
according to Definition 2. Each group is modeled as a node and
different groups are connected via shared members and items.
Compared with the hypergraph which extracts the member-
level high-order relations, the overlap graph indicates the
group-level relations.

B. Member-level Preference Network

In this subsection, we propose to model the member-level
preference from member’s personal interest. We first learn the
high-order collaborative representation of users and items from
the hypergraph convolutional network. Then, we aggregate the

member interest as the group’s member-level preference with
attention network.

Member-level Hypergraph Convolutional Network. We
have constructed the hypergraph as the basis for member
preference modeling. In the hypergraph, the collective users
and items shared by two hyperedges indicate the collabo-
rative interest among groups. To learn the user and item
representation from the hypergraph, we propose to apply the
hypergraph convolution operation to encode the high order
relations among users and items. Specifically, we feed the
concatenation of user embeddings U ∈ Rm×d and item em-
beddings I ∈ Rn×d to the hypergraph convolutional network,
denoted as X(0) = [U; I]. Referring to the spectral hypergraph
convolution [33], we define our hypergraph convolution as:

x
(l+1)
i =

N∑
j=1

M∑
ε=1

HiεHjεWεεx
(l)
j P(l), (1)

where x
(l)
i is the embedding of the i-th vertex in the (l)-th

layer. P ∈ Rd×d is the learnable weight matrix between two
convolutional layers. To keep the model simplified, nonlinear
activation function is not used. Each hyperedge is assigned
the same weight 1, indicating every group is treated equally
important. The matrix form of Eq. (1) with row normalization
is:

X(l+1) = D−1HWB−1HTX(l)P(l). (2)

The hypergraph convolution can be viewed as a two-stage
refinement performing ’node-hyperedge-node’ feature trans-
formation upon hypergraph structure. The multiplication op-
eration HTX(l) defines the information aggregation from
nodes to hyperedges. Intuitively, the group aggregates the
user members and interacted items as its representation. The
premultiplication of H is viewed to aggregate information
from hyperedges to nodes. This process extracts collaborative
information across groups to enhance the user and item
representation.

After passing X(0) through L hypergraph convolutional
layers, we average the embeddings obtained at each layer
to get the collaborative representation X∗ = 1

L+1

∑L
l=0 X

(l).
The average operation can preserve collaborative relations of
different orders. We devide the collaborative representation X∗

to user representation U∗ and item representation I∗, denoted
as [U∗; I∗] = X∗.

Member Preference Aggregation Network. Intuitively, if
a user has more expertise on an item, he should have a larger
influence on the group’s choice on the item. For example,
the group considers which movie to watch. If a user has
watched comedies many times, then he will be more influential
when the group considers watching a comedy film. We get
the group’s member-level representation gMt by performing
a weighted sum on the representation of group gt’s member
users:

gMt =
∑

uj∈Gt

α(j, h)[uj ;u
∗
j ], (3)

where the coefficient α(j, h) is a learnable parameter denoting
the influence of member user uj in deciding the group’s
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Fig. 3. Overall architecture of the proposed model HCR. The model consists of member-level preference network and group-level preference network. We
jointly optimize the model with user-item and group-item interactions.

choice on item ih. Specifically, the representation uj encodes
the member user’s historical preference and the represen-
tation u∗j contains collaborative information. Similarly, the
representation ih encodes the target item’s property and the
representation i∗h captures the collaborative characteristics. We
define α(j, h) as a attention network with uj , u∗j , ih, and i∗h
as input:

α(j, h) = hTReLU(Wu[uj ;u
∗
j ] +Wi[ih; i

∗
h] + b),

α(j, h) =
exp(α(j, h))∑
uh′∈Gt

α(j, h′)
,

(4)

where Wu and Wi are weight matrices of the attention net-
work that convert item representation and user representation
to hidden layer, respectively. We use ReLU as the activation
function of the hidden layer, and then project it to a score
α(j, h) with a weight vector h. A softmax function normalizes
the scores, which is a common practice in neural attention
network to adapt groups of different sizes. The soft attention
mechanism can compute the contribution of a user in a group’s
decision, where the contribution of a user is dependent on
his historical/collaborative preference and the target item’s
origin/collaborative property.

C. Group-level Preference Network

Simply aggregating group member’s individual interests as
the group’s preference would miss the intrinsic group-level
preferences which may be different and independent from all
individuals’ preferences within the group. We first capture the
group-level preferences from the graph convolution network

on the overlap graph of the hypergraph. Then, we aggregate
the member-level preference and group-level preference to get
the final representation of the group.

Group-level Graph Convolutional Network. The con-
structed overlap graph of the hypergraph is the basis for group-
level preference modeling. The overlap graph can be seen
as a simple graph that contains the cross-group information
and depicts the connectivity of hyperedges. To learn group
representation from the hypergraph, we propose to apply the
graph convolution operation to encode the high order relations
among groups based on the group similarity. Note that here
we are not concerned with the process of group member
aggregation, but only learn the representation of independent
group preference. Specifically, we feed the group embeddings
G ∈ Rk×d to the graph convolutional network, denoted as
G(0) = G. Referring to the spectral graph convolution, we
define our graph convolution as:

G(l+1) = D̂−1ÂG(l)Q(l), (5)

where Q(l) ∈ Rd×d is the learnable weight matrix. According
to Definition 2, the incidence matrix for L(G) is defined as
A ∈ RM×M where M is the number of nodes in the overlap
graph and Ap,q = Wp,q . We set the matrix Â = A + I
where I is an identity matrix. We denote the diagonal matrix
as D̂ ∈ RM×M where D̂p,q =

∑m
q=1 Âp,q . Intuitively, two

groups with group members tend to have similar general
preferences, and the more common members two groups share,
the higher their similarity will be. In each convolution, the
premultiplication D̂−1Â considers the group similarity when



TABLE I
THE STATISTICS OF THE DATASETS.

Dataset #Users #Groups #Items #User
interactions

#Group
interactions

#Avg. interactions
per user

#Avg. interactions
per group

#Avg. users
per group

Mafengwo 5275 995 1513 39761 3595 7.54 3.61 7.19
CAMRa2011 602 290 7710 116344 145068 193.26 500.23 2.08

the group gather information from their neighbors. By doing
so, the learned G can capture the cross-group information.

Likewise, we pass G(0) through L graph convolutional
layer, and then average the group embeddings obtained at
each layer to get the final goup-level embeddings G∗ =

1
L+1

∑L
l=0 G

(l). The group-level preference for group gt is
denoted as gGt = G∗t,:.

Group Preference Aggregation Network. We have ob-
tained the member-level group embedding gMt and group-
level group embedding gGt from the dual channel hypergraph
convolutional network. The next aim is to combine these
two kinds of hidden representations to facilitate the group
preference prediction on unrated items. We propose a neural
gating layer to adaptively merge them. This is inspired by the
gates in long short-term memory (LSTM) [34]. The gate r and
the final group representation gt are computed by:

r = sigmoid(Wg1g
M
t +Wg2g

G
t + bg),

gt = r� gMt + (1− r)� gGt ,
(6)

where Wg1 ∈ Rd×d, Wg2 ∈ Rd×d, and bg ∈ Rd are
the learnable parameters in the gating aggregation network.
By using the gating aggregation network, the salient parts
from these two hidden representations can be extracted and
smoothly combined.

D. Model Optimization

For the group-item pair (gt, ih), we feed the concatenation
of the the two embeddings and the vector of their element-
wise product to compute the prediction score ŷth of group gt
item ih:

ŷth = wTReLU(Wf [gt � ih;gt; ih] + bf ), (7)

where ih is the item embedding of the target item ih. w denote
the weights of the prediction layer. Wf and bf denotes the
weight matrix and bias vector of a feed-forward network.

Due to the implicit nature of the group-item interaction
data, we utilize pairwise learning method for optimizing model
parameters. Specifically, we employ the regression-based pair-
wise loss motivated by [4]:

Lgroup =
∑

(t,h,h′)∈DG

(ŷth − ˆyth′ − 1)2, (8)

where DG denotes the group-item training set, in which
each instance is a triplet (t, h, h′) meaning that group gt has
interacted with item ih, but has not interacted with item ih′ .
We set the margin of the prediction on the observed interaction
(gt, ih) and the unobserved interaction (gt, ih′) as 1.

Because of the data sparsity of group interactions, the
learned group representation is not sufficiently accurate. To
further accelerate and enhance the group preference learning,
we propose to incorporate the user-item interaction data to
optimize the group-item and user-item recommendation tasks
simultaneously. Similarly, for the user-item pair (uj , ih), we
compute the prediction score r̂jh of user uj item ih:

r̂jh = wTReLU(Wf [uj � ih;uj ; ih] + bf ), (9)

where the parameter are shared with the group-item feed-
forward network. The same pairwise loss function is utilized:

Luser =
∑

(j,h,h′)∈DU

( ˆrjh − ˆrjh′ − 1)2, (10)

where DU denotes the user-item training set; the triplet
(j, h, h′) represents user uj prefers observed item ih over
unobserved item ih′ .

V. EXPERIMENTS

In this section, we present our experimental setup and
empirical results. Our experiments are designed to answer the
following research questions:

RQ1: How does HCR perform in terms of group recom-
mendation compared to other state-of-the-art methods?

RQ2: How do the dual channel hypergraph convolutional
network (i,e., member-level hypergraph convolutional network
and group-level graph convolutional network) contribute to the
performance of our solutions?

RQ3: How do different predefined settings (e.g., the num-
ber of negative samples and convolutional layers) affect our
framework?

A. Experimental Setup

Datasets. We conduct experiments on two real-world
datasets, Mafengwo1, and CAMRa20112. As preprocessing,
we filtered out the groups which have at least 2 members
and have interacted with at least 3 items. As both datasets
only contain positive instances (i.e., observed interactions), we
randomly sampled from missing data as negative instances to
pair with each positive instance. Table I reports the detailed
statistics of these datasets.

Baseline Methods. To justify the effectiveness of our
methods, we compared them with the following methods.
• NCF [35]: This method treats a group as a virtual user

and ignores the member information of the group. Then

1http://www.mafengwo.cn
2http://2011.camrachallenge.com/2011



TABLE II
THE PERFORMANCE COMPARISON OF ALL METHODS ON GROUP RECOMMENDATION TASK IN TERMS OF HR@K AND NDCG@K. THE

BEST-PERFORMING METHOD IS BOLDFACED. THE IMPROVEMENT OVER BASELINE METHODS IS SHOWN IN THE LAST COLUMN.

Dataset Metric NCF Popularity COM UL ALL AGR SoAGREE HCR Improv.

Mafengwo

HR@5 0.4701 0.3115 0.4432 0.4687 0.4729 0.4898 0.7759 58.4%
NDCG@5 0.3657 0.2169 0.3325 0.3643 0.3694 0.3807 0.6611 73.6%
HR@10 0.6269 0.4251 0.5528 0.6252 0.6321 0.6481 0.8503 31.2%

NDCG@10 0.4141 0.2537 0.3812 0.4127 0.4203 0.4301 0.6852 59.3%

CAMRa2011

HR@5 0.5803 0.4324 0.5798 0.5559 0.5879 0.5883 0.6772 15.1%
NDCG@5 0.3896 0.2825 0.3785 0.3765 0.3933 0.3955 0.6115 54.1%
HR@10 0.7693 0.5793 0.7695 0.7624 0.7789 0.7807 0.8193 4.9%

NDCG@10 0.4448 0.3302 0.4385 0.4400 0.4530 0.4575 0.6576 43.7%

TABLE III
THE PERFORMANCE COMPARISON OF ALL METHODS ON USER RECOMMENDATION TASK IN TERMS OF HR@K AND NDCG@K. THE BEST-PERFORMING

METHOD IS BOLDFACED. THE IMPROVEMENT OVER BASELINE METHODS IS SHOWN IN THE LAST COLUMN.

Dataset Metric NCF Popularity AGR SoAGREE HCR Improv.

Mafengwo

HR@5 0.6363 0.4047 0.6357 0.6510 0.7571 16.3%
NDCG@5 0.5432 0.2876 0.5481 0.5612 0.6703 19.4%
HR@10 0.7417 0.4971 0.7403 0.7610 0.8290 11.7%

NDCG@10 0.5733 0.3172 0.5738 0.5775 0.6937 8.9%

CAMRa2011

HR@5 0.6119 0.4624 0.6196 0.6223 0.6731 8.1%
NDCG@5 0.4018 0.3104 0.4098 0.4118 0.4608 11.9%
HR@10 0.7894 0.6026 0.7897 0.7967 0.8595 7.9%

NDCG@10 0.4535 0.3560 0.4627 0.4687 0.5219 11.4%

users and virtual users are embedded to predict with the
same network and hyper-parameter setting of HCR.

• Popularity [36]: This method recommends items to users
and groups based on the popularity of items. The popu-
larity of an item is measured by its number of interactions
in the training set.

• COM [11]: This is a group-oriented recommender sys-
tem, which is based on the probability theory to model
the generative process of group activities.

• UL ALL [37]: This is a group recommendation al-
gorithm, which involves proposing an upward leveling
aggregation method to consider deviations for group
recommendations.

• AGR [5]: This is an attention-based group recommenda-
tion solution. It learns the attention weight of a user by
considering the impact of other group members, which
ignores the influence of items.

• SoAGREE [4]: This is a social information enhanced
method for group recommendation. It designs hierarchical
attention network learning to represent groups and users
in a hierarchical structure.

Evaluation Metrics. We adopted the leave-one-out eval-
uation protocol, which has been widely utilized to evaluate
the performance of the Top-N recommendation [38]. Specif-
ically, for each user (group), we randomly removed one of
its interactions for testing. This results in disjoint training
set and testing set Stest. Since it is too time-consuming to
rank all items for each user and group, we followed the
common scheme that randomly selected 100 items that were
not interacted by the user or the group and ranked the testing
item among the 100 items. To evaluate the performance of the
Top-N recommendation, we employed the widely used metric,

Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG). The size N of the ranked list was chosen to be [5,
10] for HR@N and NDCG@N, respectively. HR@N examines
whether or not the test item is present in the top N list, and
NDCG@N places more weights on higher-ranked items than
others in the top N list.

Experiment Settings. We implemented our method based
on PyTorch. For hyper-parameter tuning, we randomly sam-
pled one interaction for each user and group as the validation
set. As have mentioned before, the negative sampling ratio
was set to 4. For the initialization of the embedding layer, we
applied the Glorot initialization strategy [39], which was found
to have a good performance. For hidden layers, we randomly
initialized their parameters with a Gaussian distribution of a
mean of 0 and a standard deviation of 0.1. We used the Adam
optimizer [40] for all gradient-based methods, where the mini-
batch size and learning rate were searched in [128, 256, 512,
1024] and [0.01, 0.005, 0.01, 0.05, 0.1], respectively. We set
the group (user, item) embedding dimension as 32. In the dual
hypergraph convolutional network, we empirically set the size
of the convolutional layer as 3. We repeated each set for 5
times and reported the average results. Our experiments are
conducted with PyTorch running on GPU machines of Nvidia
GeForce GTX 1080 Ti53.

B. Experimental Results

Overall Performance Comparison We compare the perfor-
mance of HCR with the baselines. Note that since COM and
UL ALL are specifically designed for group recommendation,
they can not provide recommendation for individual users.

3The code is available on http://github.com/GroupRec/GroupRec



Table 2 and Table 3 show the experimental performance of
group recommendation task and user recommendation task,
respectively. The result tables depict the performance of all
methods under two metrics, i.e. Recall@K, and NDCG@K in
two real-world datasets. From the tables, we can observe that:

• For the group recommendation task, HCR consistently
outperforms all baselines under all evaluation metrics
in two benchmark datasets. Specifically, for Mafengwo
dataset, HCR improves 58.4%, 73.6%, 31.2%, and
59.3% in terms of HR@5, NDCG@5, HR@10, and
NDCG@100, compared with the second best method
(i.e., SoAGREE) in the three metrics respectively. For
CAMRa2011 dataset, HCR improves 15.1%, 54.1%,
4.9%, and 43.7% in terms of HR@5, NDCG@5, HR@10,
and NDCG@100, compared with the second best method
(i.e., SoAGREE) in the three metrics respectively. The
above experimental results illustrate the effectiveness of
HCR in group preference learning.

• For the user recommendation task, HCR consistently
outperforms all baselines under all evaluation metrics
in two benchmark datasets. Specifically, for Mafengwo
dataset, HCR improves 19.2%, 73.617.8%, 11.7%, and
18.6% in terms of HR@5, NDCG@5, HR@10, and
NDCG@100, compared with the second best method
(i.e., SoAGREE) in the three metrics respectively. For
CAMRa2011 dataset, HCR improves 8.8%, 48.8%, 2.8%,
and 40.3% in terms of HR@5, NDCG@5, HR@10, and
NDCG@100, compared with the second best method
(i.e., SoAGREE) in the three metrics respectively. The
above experimental results illustrate the effectiveness of
HCR in user preference learning.

• The performance of neural network-based methods (i.e.
NCF, AGR, SoAGREE, HCR) is superior to that of non-
personalized approach (Popularity), probabilistic graphi-
cal model (COM), and aggregation method (UL ALL).
This demonstrates the superiority of neural networks,
especially among users, groups, and items.

• The other neural network-based methods (i.e., NCF,
AGR, and SoAGREE) achieves good performance in the
two datasets. Specifically, NCF and AGR are roughly the
same in terms of the metrics. This indicates that the feed-
forward network utilized in NCF and the neural attention
mechanism used in AGR are both strong in learning
the representation of preference for users and groups.
While SoAGREE outperforms NCF and AGR under all
evaluation metrics in the two datasets. This is because that
SoAGREE aggregates the social followee to represent the
user preference. It is more effective than directly learning
the preference embedding for each user.

Importance of Components. We evaluate the effect of the
member-level hypergraph convolutional network (HCR M),
group-level graph convolutional network (HCR G), and the
complete model (HCR). The experimental results of group
recommendation task and user recommendation task are shown
in Table 4 and Table 5, respectively.

TABLE IV
THE PERFORMANCE COMPARISON OF ALL ABLATION METHODS (I.E.

HCR M, HCR G, AND HCR) ON GROUP RECOMMENDATION TASK IN
TERMS OF HR@K AND NDCG@K.

Dataset Metric HCR M HCR G HCR

Mafengwo

HR@5 0.6653 0.7669 0.7759
NDCG@5 0.4548 0.6529 0.6611
HR@10 0.7829 0.8332 0.8503

NDCG@10 0.4935 0.6738 0.6852

CAMRa2011

HR@5 0.6490 0.6331 0.6772
NDCG@5 0.4755 0.4166 0.6115
HR@10 0.8228 0.8090 0.8193

NDCG@10 0.5321 0.4743 0.6576

TABLE V
THE PERFORMANCE COMPARISON OF ALL ABLATION METHODS (I.E.
HCR M, HCR G, AND HCR) ON USER RECOMMENDATION TASK IN

TERMS OF HR@K AND NDCG@K.

Dataset Metric HCR M HCR G HCR

Mafengwo

HR@5 0.7765 0.7457 0.7571
NDCG@5 0.7083 0.6506 0.6703
HR@10 0.8358 0.8158 0.8290

NDCG@10 0.7277 0.6736 0.6937

CAMRa2011

HR@5 0.6591 0.6711 0.6731
NDCG@5 0.4337 0.5152 0.4608
HR@10 0.8495 0.8425 0.8595

NDCG@10 0.4963 0.5709 0.5219

From Table 4, we can observe:
• For the group recommendation task, HCR consistently

outperforms the other model at each step, indicating the
effectiveness of the member-level hypergraph convolu-
tional network and group-level graph convolutional net-
work. The result implies that the member-level preference
and group-level preference are both significant for group
recommendation.

• HCR M performs better than HCR G on the Mafengwo
dataset. We believe that the results are determined by
the characteristics of the two datasets. For the Mafengwo
dataset, since the number of average group members and
total users are both larger, there are more combinations
of the way to aggregate user interests. Meanwhile, there
are fewer group interactions in the Mafengwo dataset,
resulting in underfitting due to data sparsity. So it is more
suitable to use the method of aggregating member-level
member interests than directly modeling the group-level
preference.

• HCR G performs better than HCR M on the
CAMRa2011 dataset. For the CAMRa2011 dataset,
the number of average group members and total users
is both fewer, resulting in fewer combinations of
member interests. So it is difficult to use the method
of aggregating member-level member interests. Due to
the abundance of group interaction data, it is possible to
utilize these data to model group-level interests well.

From Table 5, we can observe:
• For the user recommendation task, HCR M achieves the

best performance on Mafengwo dataset. In the Mafengwo



(a) Mafengwo-HR@10 (b) Mafengwo-NDCG@10 (c) CAMRa2011-HR@10 (d) CAMRa2011-NDCG@10

Fig. 4. Performance of HCR w.r.t. the number of convolutional layers

(a) Mafengwo-HR@10 (b) Mafengwo-NDCG@10 (c) CAMRa2011-HR@10 (d) CAMRa2011-NDCG@10

Fig. 5. Performance of HCR w.r.t. the number of negative samples for each positive instances

dataset, due to a large number of users, group-level group
preference modeling may interfere with user interest
learning.

• For the user recommendation task, HCR achieves
the best performance on CAMRa2011 dataset. In the
CAMRa2011 dataset, the number of users is smaller, so
the process of group-level interests modeling assists in
capturing user interests.

Effect of model Hyperparameters. The performance of
the graph convolutional network is affected by the number of
graph convolution layers. As the number of layers increases,
the convolutional neural networks are faced with the problem
of over-smoothing, so the node representation of the high layer
is not discriminative enough to distinguish different groups’
preferences. To illustrate the impact of convolutional operation
for HCR, we show the performance of AGREE w.r.t. the
different number of convolutional layers on both Mafengwo
and CAMRa2011 datasets in Fig. 4. We observe that when the
layer is 3, better results are shown in two datasets. The larger
layer has equal results with the smaller ones. One possible
reason is that the node of the high layer may learn the over-
smoothing representation [41], which is detrimental to the
recommendation effect.

The strategy of negative sampling has been proven ra-
tional and effective in [42]. It randomly samples various
numbers of missing data as negative samples to pair with
each positive instance. With more negative samples selected,
the performance of negative sampling becomes stable and

approximates the result of all missing data considered. To
illustrate the impact of negative sampling for HCR, we show
the performance of AGREE w.r.t. different negative sample
ratios on both Mafengwo and CAMRa2011 datasets in Fig. 5.
We can observe that too small negative samples are not enough
to utilize the model performance. It is obviously seen that
sampling more negative samples is beneficial. By increasing
the number of negative samples, the model has more capacity
to optimize. With the increase of negative samples, the model
performance largely improves and becomes steady.

VI. CONCLUSION

In this paper, we propose a dual channel Hypergraph
Convolutional network for group Recommendation (HCR) for
group recommendation. We separately formulate group data
as member-level hypergraph and group-level overlap graph
tailored for graph convolutional network, which provides a
new perspective to learn fine-grained group representation.
The member-level hypergraph convolutional network inte-
grates member preferences across groups, capturing high-
order collaborative information and the group-level graph
convolutional network learns the group’s general preference
independent of the user’s interest. We conduct experiments on
two real-world datasets and show that the proposed framework
significantly outperforms the state-of-the-art methods for the
group recommendation.
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