PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly Detection

Abstract

Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in various domains such as medicine, social networks, and e-commerce. However, challenges have arisen due to the diversity of anomalies and the dearth of labeled data. Existing methodologies - reconstruction-based and contrastive learning - while effective, often suffer from efficiency issues, stemming from their complex objectives and elaborate modules. To improve the efficiency of GAD, we introduce a simple method termed PREprocessing and Matching (PREM for short). Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities. Comprising two modules - a pre-processing module and an ego-neighbor matching module - PREM eliminates the necessity for message-passing propagation during training, and employs a simple contrastive loss, leading to considerable reductions in training time and memory usage. Moreover, through rigorous evaluations of five real-world datasets, our method demonstrated robustness and effectiveness. Notably, when validated on the ACM dataset, PREM achieved a 5% improvement in AUC, a 9-fold increase in training speed, and sharply reduce memory usage compared to the most efficient baseline.

Publication
IEEE International Conference of Data Mining 2023 (ICDM 2023), December 1-3, 2023, Shanghai, China (CORE A*)
Junjun Pan
Junjun Pan
PhD Student @ Griffith (04/2024-)

My research interests mainly focus on the areas of graph machine learning and trustworthy network, especially for the graph neural network and anomaly detection.

Yixin Liu
Yixin Liu
ARC Research Fellow

My research interests include machine learning, graph analysis and audio processing.

Yizhen Zheng
Yizhen Zheng
PhD Student @ Monash (07/2021-)

My research interests include machine learning and artificial intelligence.

Shirui Pan
Shirui Pan
Professor and ARC Future Fellow

My research interests include data mining, machine learning, and graph analysis.