
Binarized Attributed Network Embedding

Hong Yang †, Shirui Pan †∗ , Peng Zhang ‡, Ling Chen †, Defu Lian ¶, Chengqi Zhang †
† Centre for Artificial Intelligence, School of Software, FEIT, University of Technology Sydney

‡ Ant Financial; ¶ University of Electronic Science and Technology of China

{hong.yang@student., shirui.pan@, ling.chen@, chengqi.zhang@}uts.edu.au;

zhangpeng04@gmail.com; dove@uestc.edu.cn

Abstract—Attributed network embedding enables joint rep-
resentation learning of node links and attributes. Existing at-
tributed network embedding models are designed in continuous
Euclidean spaces which often introduce data redundancy and
impose challenges to storage and computation costs. To this
end, we present a Binarized Attributed Network Embedding
model (BANE for short) to learn binary node representation.
Specifically, we define a new Weisfeiler-Lehman proximity matrix
to capture data dependence between node links and attributes
by aggregating the information of node attributes and links
from neighboring nodes to a given target node in a layer-wise
manner. Based on the Weisfeiler-Lehman proximity matrix, we
formulate a new Weisfiler-Lehman matrix factorization learning
function under the binary node representation constraint. The
learning problem is a mixed integer optimization and an efficient
cyclic coordinate descent (CCD) algorithm is used as the solution.
Node classification and link prediction experiments on real-world
datasets show that the proposed BANE model outperforms the
state-of-the-art network embedding methods.

Index Terms—Attributed network embedding, Weisfeiler-
Lehman graph kernels, Learning to hash.

I. INTRODUCTION

Attributed networks are popularly used to describe a large

body of networks where both node links and attributes are

observable for analysis. Applications of attributed networks

range from social networks, academic citation networks, to

protein-protein interaction networks.

In order to drill hidden patterns from attributed networks,

network embedding models such as Deepwalk [12], node2vec

[4] and LINE [17] project node links into low-dimensional

vectors. Then, the projected vectors are linearly concatenated

with node attribute vectors to represent the nodes for sub-

sequent data mining tasks such as network recommendation.

However, this type of network embedding falls into a two-

stage learning category, where node links are vectorized

independently without using any auxiliary information from

node attributes. Thus, they are incapable of capturing data

dependence between node links and attributes, and are often

referred to as plain network embedding.

To enable exploitation of the dependence information be-

tween node links and attributes, attributed network embedding
models are proposed to jointly learn from node links and

attributes. The principle behind is to use node attributes as

class labels to supervise structure learning from node links, or

vice versa. For example, the work [21] uses textual attributes

*Corresponding author.

to supervise random walks on networks and derives the

Text-associated DeepWalk (TADW) model. On the contrary,

the work [6] reversely uses node links to supervise the

factorization of attributed proximity matrices. The work [7]

mutually uses node links and attributes as labels to supervise

the learning from each other. As a result, attributed network

embedding generally outperforms plain network embedding

by considering data dependence between attributes and links.
Existing attributed network embedding models are devel-

oped in continuous Euclidean spaces. By embedding the de-

pendence information of node attributes and links, the learned

vectors may contain redundant information that degenerates

computation efficiency and increases storage cost, especially

when networks are very large. Imagining the task of k-nearest

neighbor search to recommend top-k most similar friends in

a large network of size n, assuming the latent vector is of

length d, the similarity search will take time O(n2d). Thus,

we prefer succinct (binary) node representation for fast node

recommendation.
Binary code learning [18] can generate succinct represen-

tation. The idea is to encode high-dimensional data into a

set of short binary codes with similarity preservation. Binary

coding is also referred to as hashing which maps data to

discrete Hamming space [19]. The binary codes can facilitate

to represent and search of massive data because it only needs

about one hundred binary bits to represent one data item, and

binary computation in Hamming space is efficient by using the

bit operations. Many learning-based hashing algorithms have

been developed according to different scenarios, including

the unsupervised methods [9], supervised methods [13], deep

learning based hashing methods [14]. To the best of our

knowledge, no prior studies have been focused on seeking

binary representation for attributed network to preserve both

network structure and node attributes.
In this work, we study the problem of binarized attributed

network embedding. The key challenge is how to aggregate
the information of both node links and attributes for binary
node representation learning. Considering matrix factorization

as the embedding framework, as popularly used in the previous

work [6], [7], [21], we summarize challenges as follows,

• Challenge 1: how to design a proximity matrix to capture

data dependence between node links and attributes in

attributed networks. To our best knowledge, none of

existing network proximity matrices encodes both node

links and attributes.

1476

2018 IEEE International Conference on Data Mining (ICDM)

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00207

���������������
���
������
	��
�

������������������

���
������
	��
�

�

��

�

�

�

���������

����������
����������

�����	

��

����������������������������������
������
	��
�

���
������
	��
�

������������� � ���������������

�
��������
������������

���������������������������������� �

�������� �
���
������
���
�

 �
��! �����"

�������������������������
���
������
���
�
�

�

#������$��%&�'��

(��"����! �����"

��"�$���! �����")

�

Figure 1. The conceptual framework of the Binarized Attributed Network Embedding (BANE). Given an attributed network G = {V,E,X}, derive a
Weisfeiler-Lehman proximity matrix P = (I − γD̃−1L̃)kX by aggregating information from both structure matrix A and attribute matrix X . Factorizing
matrix P into a binary node representation matrix B and an auxiliary matrix Z.

• Challenge 2: how to design a fast algorithm to solve the

binary representation problem. Existing models for em-

bedding attributed networks are formulated in Euclidean

spaces. However, factorizing the proximity matrix under

binary constraints falls into the integer programming

category which requires efficient algorithms.

• Challenge 3: how to empirically prove the effectiveness

and efficiency of the model.

To solve the above challenges, we present a new Binarized
Attributed Network Embedding model (BANE for short). In-

spired by the Weisfeiler-Lehman graph kernels [16] [8], we

define a new Weisfeiler-Lehman proximity matrix to capture

data dependence between node links and attributes. Then,

based on the new proximity matrix, we formulate a Weisfiler-
Lehman matrix factorization learning function under the bi-

nary representation constraint. The learning problem falls into

the category of mixed integer optimization and we use an

efficient cyclic coordinate descent (CCD) algorithm [13] as the

solution. Experimental results on real-world datasets validate

the performance of the proposed method. The framework of

BANE is illustrated in Figure 1. The contribution of the paper

is threefold:

• We first study the binarized attributed network embedding
problem and present a new BANE model as the solution.

• We define a new Weisfeiler-Lehman proximity matrix
to encode data dependence between node links and at-

tributes, based on which a new Weisfeiler-Lehman matrix
factorization is presented to learn binary representation.

• We conduct experiments to validate the performance of

the proposed BANE model. The source codes are publicly

available online.

II. RELATED WORK

Attributed Network Embedding. Current network embed-

ding methods can be categorized into plain network embedding
[20] and attributed network embedding [1]. Different from

plain network embedding that independently vectorizes node

links without using auxiliary information from node attributes,

attributed network embedding jointly models their depen-

dence, by using node attributes as class labels to supervise

the learning of node links, or vice versa. A typical attributed

network embedding model is the TADW model [21] that uses

textual attributes to supervise random walks on networks.

Similar works include the TriDNR [11], Adversarially Reg-

ularized Graph Autoencoder (ARGA) [10], active network

representation learning approach (ANRMAB) [3].

Learning to Hash. Hashing or binary coding [18] encodes

high-dimensional feature vectors of documents, images and

videos to compact binary codes, while preserving similarity

structure in the original space. The binary codes can facilitate

to represent and search of massive data because it only needs

about one hundred binary bits to represent one data item, and

binary computation in Hamming space is efficient by using

the bit operations. Many learning-based hashing algorithms

have been developed to different scenarios, including the

unsupervised methods [9], supervised methods [13], deep

learning based hashing methods [14]. A recent research learns

discrete representation for plain networks [15]. In this paper,

we will learn compact binary codes for attributed network

embedding.

III. PROBLEM STATEMENT

An attributed network is represented as G = {V,E,X},

where V = {vi}ni=1 denotes nodes, E = {eij}ni,j=1 denotes

undirected edges, and X = {xi}ni=1 ∈ Rn×f denotes attribute

vectors of the nodes with f the dimension of attribute vectors.

In addition, the structure of network G can be derived from

edges in E, denoted as an adjacency matrix A, where Aij = 1,

if eij ∈ E, otherwise, Aij = 0. By adding a self-loop to each

node in the network, we have Ã = A + I , where I is an

identity matrix. D̃ = diag(d̃1, ..., d̃n) is a degree matrix of Ã,

with d̃i =
∑

j ãij being the degree of node vi.

1477

Given the attributed network G, we wish to embed each

node vi ∈ V into a d-dimensional vector bi ∈ {−1,+1}d in

Hamming space, where bi is the ith row of matrix B ∈ Rn×d.

Ideally, matrix B can preserve the structure information A and

the attribute information X in the original network G.

The key question is to design a proximity matrix that can

jointly describe structure A and attribute X . For example,

TADW [21] derives the proximity matrix by using the textual

attributes X to supervise the random walk of structure A. The

process can be taken as using the random walk kernel (super-

vised by node attributes) on graphs for node representation.

Instead of using random walk graph kernels, we use the

Weisfeiler-Lehman graph kernels to generate a new proximity

matrix P that encodes both node attributes in X and links in A.

Specifically, we define the Weisfeiler-Lehman proximity matrix
based on the Weisfeiler-Lehman graph kernels as follows,

Definition 1. (Weisfeiler-Lehman Proximity Matrix). Given

a network G with adjacency matrix A and attribute matrix

X , let D̃ be a degree matrix of Ã and L̃ = D̃ − Ã, the

Weisfeiler-Lehman proximity matrix P is defined as P = (I−
γD̃−1L̃)kX , where γ ∈ [0, 1] is a tradeoff parameter, and k
is the number of aggregation layers.

The Weisfeiler-Lehman proximity matrix is based on the

Weisfeiler-Lehman graph kernels [16] and thus naturally cap-

tures data dependence between node links and attributes. In

particular, the proximity matrix has the following properties:

Property 1. The Weisfeiler-Lehman proximity matrix enables

aggregation of node attributes and links from neighboring

nodes to a target node. Parameter k controls the number

of layers of neighboring nodes joining the aggregation.

If k = 1 and γ = 1, matrix P equals the one-

layer Weisfeiler-Lehman graph kernel (Section IV.C for

details).

Property 2. The Weisfeiler-Lehman proximity matrix enables

the tradeoff of node aggregation between neighboring

nodes and a target node, where γ is the smoothing

parameter.

IV. THE PROPOSED METHOD

In this section, we first derive the learning function of

binarized Weisfeiler-Lehman matrix factorization, and use

the Cyclic Coordinate Descent (CCD) [13] algorithm as the

solution to get binarized embedding. We further pinpoint the

connection between the new proximity matrix and Weisfeiler-

Lehman graph kernels.

A. Binarized Weisfeiler-Lehman Matrix Factorization

Based on Definition 1, we factorize the Weisfeiler-Lehman

proximity matrix P = (I−γD̃−1L̃)kX which jointly encodes

node attributes and links into a binary node representation

matrix B and an auxiliary matrix Z. Formally, the learning

function of the binarized Weisfeiler-Lehman matrix factoriza-

tion can be defined as follows,

min
B,Z

1

2
‖(I − γD̃−1L̃)kX −BZ‖2F +

α

2
‖Z‖2F , (1)

s.t. : B ∈ {−1,+1}n×d, Z ∈ Rd×f ,

where α is a regularization parameter with respect to the

auxiliary matrix Z. Due to the binary constraint with respect

to matrix B, Eq.(1) is NP-hard. Next, we introduce efficient

algorithms as the solution.

B. Algorithms

We propose an alternating algorithm to iteratively optimize

each variable to solve the optimization problem in Eq.(1). The

algorithm updates one parameter at a time and converges fast.

We describe the details of the algorithm as follows,

Z-Step. Given B, solve the sub-problem with respect to Z in

Eq.(1). The loss function can be written as follows,

min
Z

1

2
‖(I − γD̃−1L̃)kX −BZ‖2F +

α

2
‖Z‖2F , (2)

= −tr(PTBZ) +
1

2
tr(ZTBTBZ) +

α

2
tr(ZTZ).

Note P = (I − γD̃−1L̃)kX , and tr(.) is the trace norm. By

calculating the derivative of Eq.(2), we derive a closed form

solution as follows,

Z = (BTB + αI)−1BTP. (3)

B-Step. It is difficult to solve B due to the discrete constraint.

Given Z fixed, rewrite the objective function in Eq. (1) with

respect to B as follows,

min
B

1

2
‖(I − γD̃−1L̃)kX −BZ‖2F (4)

=
1

2
tr(ZTBTBZ)− tr(BTPZT),

s.t. : B ∈ {−1,+1}n×d.

Under the observation that a closed-form solution for one
column of B can be achieved by fixing all the other columns,

the algorithm iteratively learns one bit of B at a time.

Let bl be the lth column of B, and B′ the matrix of B
excluding bl. Then, bl is the one bit for all the n samples.

Similarly, let ql be the lth column of Q = PZT , Q′ the matrix

of Q excluding ql, zl the lth row of Z and Z ′ the matrix of

Z excluding zl. Then we obtain

tr(ZTBTBZ) = zlZ
′TB

′T bl + const. (5)

Following the same logic, we obtain

tr(BTQ) = (ql)T bl + const. (6)

Plugging Eqs.(5) and (6) back into Eq.(4), we obtain the

optimization problem with respect to bl as follows,

min
bl

zlZ
′TB

′T bl − (ql)T bl (7)

= (zlZ
′TB

′T − (ql)T)bl

s.t. : bl ∈ {−1,+1}n×1

1478

Algorithm 1 Binarized Attributed Network Embedding (BANE)

Input: Structure A, attribute X , dimension d, # of iterations

t1 and t2, parameters k, γ, α
Output: Binary representation matrix B
1: Initialize Z, B randomly

2: Repeat until converge or reach t1
3: Z-Step: Calculate Z using Eq.(3)

4: B-Step: Repeat until converge or reach t2
5: for l = 1, · · · , d do
6: update bl using Eq.(8)

7: end for
8: return matrix B

Eq.(7) has a closed form solution as follows,

bl = sign(ql −B′Z ′(zl)T). (8)

By using this method, each bit b can be computed based

on the pre-learned d − 1 bits of B′. The convergence of the

alternating optimization is guaranteed theoretically, because

every iteration decreases the objective function value and the

objective function has a lower bound.

The details of the algorithm is given in Algorithm 1.

Empirical results demonstrate that the algorithm takes a few

iterations to converge. For example, in our experiments B is

iteratively computed and the algorithm converges fast in about

3− 10 iterations.

C. Connection with Weisfeiler-Lehman Graph Kernels

The idea of aggregating information from neighboring nodes

to a target node originated from the Weisfeiler-Lehman graph

kernels [16], where the parameter k controls the layers of

neighboring nodes joining the information aggregation. The

original idea of the Weisfeiler-Lehman algorithm is to augment

the node labels by the sorted set of node labels of their

neighboring nodes, and then compress these augmented labels

into new, short labels.

Theorem 1. Let k = 1, γ = 1, and P = (I − γD̃−1L̃)kX ,

then P is a one-layer Weisfeiler-Lehman graph kernel.

Proof. When γ = 1, k = 1, then P = D̃−1ÃX = P (1). Let

h
(k)
i be the information of node vi in the k-th iteration, and Ni

be the neighbors of vi. Define a linear aggregation function,

integrating neighboring nodes’ information and the target

node’s information under the Weisfeiler-Lehman algorithm, we

can obtain the following information propagation rule,

h
(k)
i = h

(k−1)
i +

∑

j∈Ni

h
(k−1)
j . (9)

Such an information propagation rule can be further rewritten

into a compact matrix form as follows,

H(k) = ÃH(k−1), (10)

where Ã = A + I , which adds a self-loop to each node in

the network. D̃ = diag(d̃1, ..., d̃n) is the degree matrix of Ã.

Normalizing the matrix Ã by its degree matrix D̃, we can

obtain

H(k) = D̃−1ÃH(k−1). (11)

At the beginning of the aggregation, i.e., k = 1, H(0) = X ,

then H(1) = P (1). Thus P (1) is a one layer Weisfeiler-Lehman

graph kernel.

V. EXPERIMENTS

In this section, we evaluate the performance of BANE on

node classification and link prediction tasks. Node classifica-

tion is popularly used to estimate the performance of network

embedding methods. Moreover, the link prediction task is a

popular testbed for evaluating model efficiency.

Table I
DATASET DESCRIPTION

Datasets # Nodes # Edges x|E| # Attributes # Labels

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Wiki 2,405 17,981 4,973 19

A. Experimental Setup

Datasets. Three real-world attributed networks are used as

testbed. They are popularly used in previous work [21].

Statistics of the datasets are summarized in Table I.

Baseline Methods. We compare our method with the state-of-

the-art. DeepWalk and node2vec use plain network structure

for embedding. TADW, HSCA and LANE use both network

structure and attributes. The details are listed below,

• DeepWalk [12] captures contextual structure information

based on random walks.

• Node2vec [4] performs a biased DeepWalk to explore

diverse neighbors.

• TADW [21] learns node representations by combining

attributes with structure in matrix tri-factorization.

• HSCA [22] adds the firstorder proximity to TADW.

• LANE [7] models the structural proximities in the at-

tributed network and labels based on pairwise similarities.

Settings and Metrics. For fair comparisons, we set the

embedding dimension d = 100 for all baselines. All the

parameters are set to be the default values.

For node classification, we randomly sample a portion of

labeled nodes for training and use the rest for testing. The

training ratios range from 10% to 90% with an increasing step

of 20% for all the datasets. We use 10-fold cross validation

and repeat the testing for 10 times. The performance of all the

methods are evaluated in terms of Micro-F1 and Macro-F1.

For link prediction, we randomly sample 90% neighbors of

each node for training and use the rest for testing. We also

repeat the recommendation procedure 10 times and evaluate

the performance of all the methods in terms of AUC [5], which

represents the probability that a randomly selected unobserved

link is more similar than a randomly selected non-existent one.

1479

Table II
NODE CLASSIFICATION RESULTS (d=100)

Micro-F1 (%) Macro-F1(%)

Datasets Models 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Cora

DeepWalk 63.71 73.50 78.83 80.29 81.20 61.02 71.65 77.63 79.08 79.83
Node2vec 67.10 77.30 81.22 82.68 83.52 66.56 76.50 80.14 81.61 82.28
TADW 81.50 84.97 85.78 86.23 86.93 79.71 83.35 84.26 84.44 85.35
HSCA 75.21 81.25 85.10 85.97 86.38 73.42 80.10 84.01 84.41 84.82
LANE 67.21 70.15 73.38 76.91 80.81 66.39 68.49 72.67 75.32 79.95
BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11

Citeseer

DeepWalk 43.24 49.06 54.41 56.16 56.31 40.57 45.65 49.33 50.32 49.17
Node2vec 48.56 55.77 62.55 63.66 63.69 46.78 53.92 58.09 59.42 60.47
TADW 69.38 71.48 72.18 72.75 72.84 61.80 64.62 65.83 66.54 67.03
HSCA 69.47 71.54 72.61 73.66 73.96 61.62 64.80 65.98 66.70 67.21
LANE 53.81 60.72 61.65 63.58 67.77 50.33 57.05 58.14 60.63 63.60
BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35

Wiki

DeepWalk 56.95 61.44 63.71 65.33 66.55 45.36 48.37 50.63 52.28 52.81
Node2vec 57.83 62.25 63.70 65.31 66.36 45.88 49.90 50.78 52.22 52.04
TADW 67.04 71.25 72.36 73.19 74.33 46.76 51.45 52.76 53.07 53.22
HSCA 68.75 71.87 73.35 74.71 77.05 46.30 52.03 53.57 54.57 54.90
LANE 62.95 69.04 70.45 72.01 73.24 46.38 50.73 52.34 54.62 55.12
BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04

B. Node Classification Results

For all the three datasets, we reduce the dimension of

node attributes to 200 by using the SVD decomposition on

X . The preprocessing reduces the number of parameters in

factorization. We use SVM [2] for node classification. The

embedding dimension d is set to 100 and the regularization

parameter α is set to 0.001.

Table II lists the results of node classification. We summa-

rize the results as follows,

• First, BANE significantly outperforms DeepWalk and

node2vec on all datasets with respect to both Micro-F1

and Macro-F1 under different training ratios from 10% to

90%. The results indicate that combining node links and

attributes can substantially improve embedding accuracy.

• Second, BANE outperforms all the attributed network

embedding algorithms on different datasets in terms of

both Micro-F1 and Macro-F1 under different training ra-

tios. The classification results are significantly higher than

the other baseline methods by 3% on the Wiki dataset.

The results indicate the effectiveness and robustness of

BANE to handle both structure and attribute information.

• Third, BANE is the only binarized representation method.

The results show that binary representation does not

necessarily lead to accuracy loss. In fact, it may avoid

the trap of over-fitting.

• Forth, BANE performs stably better than all the other

benchmarks when the training ratio is low. For example,

the Micro-F1 result on Wiki with 10% training reaches

0.714, which is much higher than the second highest

0.687 from HSCA. The accuracy results of most baseline

methods drop rapidly when the training ratio decreases,

because their node representations are noisy and incon-

sistent from training to testing. Instead, BANE learns

jointly from node links and attributes by using high layer

Weisfeiler-Lehman proximity matrix. Thus, the results of

BANE contain less noise and are more robust.

Table III
LINK PREDICTION RESULTS ON THREE DATASETS

Cora Wiki Citeseer

DeepWalk 83.10 80.46 80.56
Node2vec 81.59 78.91 80.24
TADW 89.77 89.86 93.80
HSCA 87.01 87.45 93.50
LANE 86.07 77.21 77.18
BANE 93.50 90.90 95.59

C. Link Prediction Results
Table III shows the results of link predictions on the three

datasets. We randomly sample 90% neighbors of each node for

training and the rest for testing. We measure the performance

by AUC. The observations are listed below,

• First, we can observe that our method significantly out-

performs baselines. The AUC score reaches very high

value of 93.5% on Cora and 95.6% on Citeseer.

• Second, we can observe that converting real-valued num-

bers into binary representation can improve the link pre-

diction accuracy. This is because the binary representation

can alleviate the over-fitting problem and it is more intu-

itional to express the Yes/No option for recommendation.

Furthermore, binary representation can replace the dot-

product similarity computation with bit-wise Hamming

distance. Thus, the speed can be significantly improved.

D. Binarized vs Real-valued Weisfeiler-Lehman Proximity
Matrix Factorization

We also compare the original binary BANE model with its

real-valued variant (BANE-r for short) by removing the binary

constraint in Eq. (1). The results are reported in Table IV.

1480

Table IV
NODE CLASSIFICATION RESULTS BETWEEN REAL-VALUED EMBEDDING AND BINARIZED EMBEDDING.

Micro-F1 Macro-F1

Datasets Models 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Cora

BANE-r 80.94 86.70 87.56 87.87 89.00 79.75 85.64 86.46 86.61 87.92
BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11

Citeseer

BANE-r 67.91 74.15 75.17 75.82 76.01 61.77 69.11 70.47 71.18 71.78
BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35

Wiki

BANE-r 63.82 71.04 74.76 75.65 77.44 48.71 60.55 65.53 67.20 72.21
BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04

When comparing with BANE, we can observe that the real-

valued embedding RANE receives slightly higher accuracy

results than binary embedding on Cora and Citeseer when

training ratios increase from 30% to 90%. Nevertheless, if

training ratio is as low as 10%, the binary embedding of BANE

beats real-valued embedding. For example, the classification

Micro-F1 on the Citeseer dataset with 10% training ratio is

70.24 of BANE versus 67.91 of RANE. On the Wiki dataset,

the Micro-F1 scores of BANE are higher than that of RANE

at all training ratios, but the Macro-F1 scores are lower.

Remarks: The results show that the binary embedding

BANE obtains competitive embedding results as real-valued

embedding, especially when the training ratio is low. The

reasons may be as follows.

First, binary constraints can be viewed as adding non-

linear features to the linear matrix factorization, so linear

classification on binary codes is equivalent to learning a

nonlinear classifier on the original data. Second, the limited

two values of binary codes can alleviate the possible over-

fitting problem and obtain encouraging results even when the

training ratio is small.

VI. CONCLUSIONS

In this paper we study a new problem of Binarized At-
tributed Network Embedding (BANE for short). We define a

new Weisfier-Lehman proximity matrix to jointly encode data

dependence between node links and attributes. Based on the

new proximity matrix, we formulate a new binarized Weisfier-

Lehman matrix factorization model to obtain binary node

representation. Theoretical studies show the close connections

of the new proximity matrix with Weisfier-Lehman graph

kernels. Empirical results also validate the promising results

compared with popular network embedding models.

In the future, we will consider to use the automated machine

learning methods (AutoML) to search the best parameters for

the BANE model. We wish the Weisfier-Lehman proximity

matrix can precisely capture data dependence between node

links and attributes for any given large networks with minimal

human efforts.

ACKNOWLEDGMENT

This work is supported by an Australian Government Re-

search Training Program Scholarship and Australian Research

Council(ARC) Discovery Grant DP180100966.

REFERENCES

[1] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal,
and Thomas S Huang. Heterogeneous network embedding via deep
architectures. In KDD, pages 119–128. ACM, 2015.

[2] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: A library for large linear classification. JMLR,
9(Aug):1871–1874, 2008.

[3] Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, and Yue Hu.
Active discriminative network representation learning. In IJCAI, pages
2142–2148, 7 2018.

[4] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In KDD, pages 855–864. ACM, 2016.

[5] James A Hanley and Barbara J McNeil. The meaning and use of the
area under a receiver operating characteristic (roc) curve. Radiology,
143(1):29–36, 1982.

[6] Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network
embedding. In SDM, pages 633–641. SIAM, 2017.

[7] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network
embedding. In WSDM, pages 731–739. ACM, 2017.

[8] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[9] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph
hashing. In NIPS, pages 3419–3427, 2014.

[10] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and
Chengqi Zhang. Adversarially regularized graph autoencoder for graph
embedding. In IJCAI, pages 2609–2615, 7 2018.

[11] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-
party deep network representation. In IJCAI, pages 1895–1901, 2016.

[12] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In KDD, pages 701–710. ACM, 2014.

[13] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. Supervised
discrete hashing. In CVPR, pages 37–45, 2015.

[14] Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao
Shen. Unsupervised deep hashing with similarity-adaptive and discrete
optimization. TPAMI, 2018.

[15] Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen
Sun. Discrete network embedding. In IJCAI, pages 3549–3555, 7 2018.

[16] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
JMLR, 12(Sep):2539–2561, 2011.

[17] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. Line: Large-scale information network embedding. In
WWW, pages 1067–1077, 2015.

[18] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey
on learning to hash. TPAMI, 2017.

[19] Wei Wu, Bin Li, Ling Chen, Xingquan Zhu, and Chengqi Zhang. k-ary
tree hashing for fast graph classification. TKDE, 2017.

[20] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang
Yang, and Stephen Lin. Graph embedding and extensions: A general
framework for dimensionality reduction. TPAMI, 29(1):40–51, 2007.

[21] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y
Chang. Network representation learning with rich text information. In
IJCAI, pages 2111–2117, 2015.

[22] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Homophily,
structure, and content augmented network representation learning. In
ICDM, pages 609–618. IEEE, 2016.

1481

